特別寄稿2

還元型酸化グラフェンを用いたソーラー水分解の ための光触媒および光電極系の開発

東京理科大学 理学部 応用化学科 いわせ あきひで 東京理科大学 総合研究機構 光触媒国際研究センター 助教 岩瀬 顕秀

1. はじめに

水素は、エネルギー源としてのみならず、化成品の原料 など工業的に需要の多い物質である。この水素をクリーン に製造する方法として、再生可能エネルギーを利用した水 分解があげられる。再生可能エネルギーの中でも、太陽 エネルギーは特に膨大なエネルギーを持っていることから、 太陽光を利用した水分解がクリーンな水素製造法の究極 的な答えと言っても過言ではない。その方法の一つに、光 触媒を用いた水分解がある。一般に光触媒とは、図1に 示すように、適度なバンドギャップ (BG) で伝導帯と価電 子帯がわけられた半導体である。このような半導体に BG 以上のエネルギーを持つ光が照射されると、価電子帯の 電子 (e⁻) が伝導帯へと励起され、価電子帯には正孔 (h⁺) が生じる。水分解反応の場合では、電子および正孔は光 触媒表面でそれぞれ水を還元および酸化し、水素および 酸素が生成する¹⁾。この反応は、光エネルギーを水素とい う化学エネルギーへ変換する反応であることから、人工光 合成と呼ばれている。

光触媒を用いた水分解の反応系は、光触媒粉末を水中 に懸濁させて使用する粉末系と導電性基板上に固定して 使用する光電極系に大別される(図2)。粉末系は、大面 積化が容易な一方で、水素と酸素が混合気体として発生 するというデメリットもある。光電極系では、水素と酸素 の分離生成が可能であるものの、大面積化およびコストの 面では不利である。このように、どちらの系にも一長一短 がある。

図1 半導体光触媒のバンド図

図 2 光触媒を用いた水分解の反応系; (a) 粉末系および(b) 光電極系

可視光照射下での水分解できる光触媒系として、図3の ように、二種類の光触媒(光電極)を組み合わせることが 多い。図3aの水素生成光触媒と酸素生成光触媒の二種 類の光触媒粉末を組み合わせた系は、Zスキームと呼ば れており、光生成した電子および正孔により、それぞれの 光触媒上で水素および酸素が生成する。酸素生成光触媒 中に残った電子および水素生成光触媒中に残った正孔は、 電子伝達剤と呼ばれるイオン対を還元・酸化する。このよ うにして、系全体で水が分解されたことになる。図3bの 光アノードと光カソードの二種類の光電極を組み合わせた 系では、光アノード上で水の酸化により酸素が、光カソード 上で水の還元により水素が生成する。光アノード中の電子 は外部回路を通り、光カソード内の正孔と反応する。

図3に示した二つの系に共通することは、水分解反応 が進行するためには、光生成したキャリア(電子および正孔) が他の粒子へと移動する必要があることである。粉末系の 場合では、酸素生成光触媒中の電子は、水素生成光触媒 中の正孔と反応するために、電子伝達剤を介して(場合に よっては粒子同士の接触で)移動する。光電極系では、光 触媒粒子内で励起したキャリアがいくつかの粒子を経由し て導電性基板へ移動する。この粒子間の電子移動速度は 遅いため、その電子移動を円滑に進めさせることができれ ば、反応系の性能向上につながる。そこで、カーボン系の 導電性材料である還元型酸化グラフェン(RGO:Reduced Graphene Oxide) に着目した。RGO は二次元のシートで あることから、多くの粒子と接し、電子移動を促進すると 考えられる。本稿では、著者らが見いだした光触媒および 光電極による水分解の効率を向上させる新しい手段として の RGO の利用について紹介する。

2. RGO添加による水分解のための光電極系の高性能化^{2,3)}

光電極の作製法には様々な方法があるが、著者らは光触 媒粒子を導電性基板に塗布する方法に着目している。この 電極作成法は簡便であり、大面積化が容易という利点があ る。このような光電極の場合、基板上に粒子が堆積している ことから、これら粒子間のキャリアの移動が特に重要となる。

2.1 BiVO₄ 光アノードに対する RGO 添加効果²⁾

まず、電子がメインキャリアであるn型半導体光電極に 対する RGO 添加効果について紹介する。光触媒として は、可視光応答性材料である BiVO₄ を用いた⁴⁾。酸化グラ フェン (GO)を BiVO4 とともに 50 vol% のメタノール水溶液 中に懸濁させ、窒素をパージした後に光を照射すると、光 生成した電子により BiVO4 上で GO が RGO へと還元され る。このように光触媒の還元力を利用した GO の還元は、 RGO- 光触媒コンポジットを簡便に作成する方法の一つで ある。RGOの還元度合いは、X線光電子分光法(XPS) により評価することができる。光照射前のGOでは、C-C、 C-OおよびC=Oに帰属される特異的な3つのピークがそ れぞれ 285、287 および 289 eV 付近に観察される (図 4)。 一方、光照射後のサンプルでは、照射前に見られた C-O に帰属されるピークの強度が、C-Cのピーク強度に対し て著しく低下している。このことから、光照射によりGO が RGO へと還元されていることがわかる。これまでに、 TiO₂ 光触媒を用いた GO の RGO への還元は報告されて いるものの⁵⁾、より伝導帯の低い(還元力の弱い)BiVO4 光触媒でもGOを還元できることを明らかにした。

得られた RGO-BiVO₄ コンポジットをフッ素ドープ酸化 スズ (FTO) 導電性基板上に塗布することで電極化し、光 電気化学特性を調べた結果を図5a に示す。BiVO₄のみ を用いて作成した電極の可視光照射下におけるアノード光 電流は、ほぼ無視できる程度である。それに対し、RGO-BiVO₄ コンポジット電極は大きなアノード光電流を与える。 このように、RGO 添加により BiVO₄ 電極の性能が飛躍的 に向上している。さらに、本 RGO-BiVO₄ 光電極のアクショ ンスペクトルを測定すると、アノード光電流が発現し始め る波長と BiVO₄ 光触媒の吸収端が良く一致する。このこ とから、向上したアノード光電流は、BiVO₄ 光触媒の光励 起に由来するものであることがわかる。これらのことから、 RGO 添加による BiVO4 光触媒の高性能化は、図5b のように、RGO がない場合には粒子を通って FTO 基板へと移動しなければいけなかった電子が、導電性の良い RGO を通り FTO 基板へとたどり着けるようになったためであると結論づけられる。

図 4 (a) 酸化グラフェンおよび (b) BiVO₄ により還元された還元型
酸化グラフェンにおける X 線光電子分光法 (XPS)の C1s ピーク

図 5 BiVO₄光電極に対するRGOの添加効果とそのメカニズム

- (a) BiVO₄ 光電極および RGO-BiVO₄ 光電極の可視光照射下に おける電流-電位曲線
- (b) RGO を複合することによる BiVO₄ 光電極の高性能化のメカ ニズム:電解液:0.1 mol L-1 Na₂SO₄ 水溶液、光源:300 W Xe ランプ(λ≥420 nm)、反応管:Ag/AgCl 参照電極および Pt 対極を備えた Pyrex 製H型セル

2. 2 CuGaS₂ 光カソードに対する RGO 添加効果³⁾

次に、正孔がメインキャリアである p 型半導体光電極に 対する RGO 添加効果について紹介する。光触媒としては、 可視光応答性材料である CuGaS₂を用いた。BiVO₄の場 合と同様に、CuGaS₂によりGOを光触媒的に還元するこ とで、RGO-CuGaS2 コンポジットが調製できる。このコン ポジットをFTO 基板上に固定して可視光を照射すると、 RGO 未添加の CuGaS2 光電極よりも顕著に大きなカソー ド光電流が得られる (図 6)。この RGO-CuGaS₂ 光電極を 用いて、定電位電解しながら生成した気体を定量すると、 生成した水素およびカソード光電流から見積もったファラ デー効率はほぼ 100% となる。このことから、RGO 添加 により向上したカソード光電流は水の還元によるものであ ることを確認できる。さらに、RGO-CuGaS2のアクション スペクトルにおいても、カソード光電流が発現し始める波 長とCuGaS2光触媒の吸収端が良く一致する。以上のこと から、RGO-CuGaS2光電極においても、RGOが光生成 したキャリアの移動を促進していると結論づけられる。

このように高性能化した RGO-CuGaS₂ 光電極を光カ ソードとして、酸化コバルト助触媒担持 BiVO₄ 光アノー ドと短絡的につなぎ、両光電極に疑似太陽光を照射する と、二電極間に外部バイアスを印加しなくても光電流が得 られる。この場合、RGO-CuGaS₂ 光カソード上で水素、 BiVO₄ 光アノード上で酸素が発生し、光電気化学的水分 解が進行する。

このように、RGOが半導体特性を問わずに、光電極を 高性能化させる手段として有効であることを見いだした。

図 6 CuGaS₂光電極に対するRGOの添加効果

CuGaS₂ 光電極および RGO-CuGaS₂ 光電極の可視光照射下に おける電流 – 電位曲線;電解液: 0.1 mol L^{-1} K₂SO₄ 水溶液、 光源: 300 W Xeランプ ($\lambda \ge 420$ nm)、反応管: Ag/AgCl 参照 電極および Pt 対極を備えた Pyrex 製H型セル

3. RGOを電子伝達剤として用いたZスキーム型水分解系⁶⁾

BiVO₄酸素生成光触媒およびRu担持RhドープSrTiO₃ (Ru/SrTiO₃:Rh)水素生成用光触媒⁷⁾の組み合わせは、 これまでに報告されているZスキーム型光触媒の代表例 の一つである。この二つの光触媒を組み合わせたZスキー ム系においては、これまでに、Fe^{3+/2+}イオン対やCo 錯体 などの均一系電子伝達剤が用いられてきた^{8,9)}。また、この ような電子伝達剤を用いなくても、BiVO₄粒子および Ru/ SrTiO₃:Rh粒子の水中での接触により、Zスキーム型の 電子移動が起こるというユニークな系でもある^{10,11)}。

Ru/SrTiO₃:Rh光触媒粒子およびBiVO₄光触媒粒子 を水中に懸濁させ可視光を照射すると、水素と酸素が化 学量論比で得られる。酸素生成光触媒としてRGO-BiVO₄ コンポジットを用いると、RGO未添加のBiVO₄を用いた 場合に比べ、活性が飛躍的に向上し、可視光照射下でお よそ3倍の速度で化学量論比の水素および酸素が生成す る(図7a)⁶。この水分解反応は疑似太陽光照射下にお いても進行する。Ru/SrTiO₃:RhもしくはRGO-BiVO₄の どちらか一方のみを縣濁した反応溶液に可視光を照射して も、水分解反応は進行しない。このことから、RGOを用 いた本系においても、Ru/SrTiO₃:Rh および RGO-BiVO₄ がともに光励起されることにより水分解反応が進行してい ることがわかる。

本Zスキームの活性は反応溶液のpHに依存し、酸性 下で特に効率良く水分解反応が進行する。このZスキー ム系は、固体のみから構成されているため、固体間で 直接電子が移動している。つまり、Ru/SrTiO3:Rh 粒子 および RGO-BiVO4 粒子の接触が、本系の活性に影響 を与える重要な因子である。酸性の水溶液中でのRu/ SrTiO₃:Rh 粒子および BiVO₄ 粒子を光学顕微鏡で観 察してみると、両光触媒粒子が良く凝集している様子 が観察される。それに対し、活性の低い中性では凝集 せずに分散している様子が観察される。このことから、 RGO 添加による本 Zスキーム系の活性の向上は、RGO が BiVO4 酸素生成用光触媒から Ru/SrTiO3: Rh 水素 生成用光触媒への電子移動を促進したためである(図 7b)。図7aに示されているように、水素および酸素が 定常的に生成しており、RGO が本Zスキーム型光触媒 において、不均一系電子伝達剤として安定に機能して いることがわかる。このように、RGO が水分解のため の固体電子伝達剤として有用に機能することを見いだした。 本系の特徴は、RGO を用いることにある。たとえば、グラ フェンを用いると、疎水性が強いために水に浮いてしまい、 電子伝達剤としては機能しない。このように、光触媒によ り適度に還元された RGO が水分解のための電子伝達剤と して有効に機能する。

図7 Ru/SrTiO₃: Rh 水素生成光触媒および RGO-BiVO₄酸素生成光触媒を組み合わせたZスキーム系による 可視光照射下での (a) 水分解および (b) メカニズム

4. おわりに

本稿では、著者らが成功している RGO の光触媒を用い た水分解系への応用展開を、電極系および粉末系にわけ て紹介した。光電極系では、導電性材料である RGO が、 半導体特性を問わず、n型半導体光電極およびp型半導 体光電極の高性能化に寄与することを見いだした。粉末系 では、RGOがZスキーム系の固体電子伝達剤として働くこ とを見いだした。特に、RGO 固体電子伝達剤を用いた Z スキーム系では、従来の均一系電子伝達剤の問題点であっ た、イオンの光触媒表面への吸着や逆反応などの問題が ない。実際に、RGOを用いることにより硫化物光触媒を Zスキーム系の水素生成光触媒として利用することに成功 12) するなど、新しいZスキーム系の開発に期待が持たれる。 光触媒を用いた水分解は、日本を含め、世界中で大型プ ロジェクトが走り、注目されている研究分野である。現状 のエネルギー効率は高くないものの、近年の本分野の技術 の進展は目覚ましい。近い将来、国産の本水素製造技術が、 世界的なエネルギー・環境問題の解決に貢献することを期 待したい。

謝辞

本研究は、2013年度 ENEOS 水素基金の助成を受けて 実施した。

- 参考文献 -

- 1) Kudo, A., Miseki, Y.; Chem. Soc. Rev., 38, 253 (2009).
- 2) Ng, Y. H., Iwase, A., Kudo, A., Amal, R.; J. Phys. Chem. Lett., 1, 2607 (2010).
- 3) Iwase, A., Ng, Y. H., Amal, R., Kudo, A.; J. Mater. Chem. A, 3, 8566 (2015).
- 4) Kudo, A., Omori, K., Kato, H.; J. Am. Chem. Soc., 121, 11459 (1999).
- 5) Williams, G., Seger, B., Kamat, P. V.; ACS Nano, 2, 1487, (2008).
- Iwase, A., Ng, Y. H., Ishiguro, Y., Kudo, A., Amal, R.; J. Am. Chem. Soc., 133, 11054 (2011).
- 7) Konta, R., Ishii, T., Kato, H., Kudo, A.; J. Phys. Chem. B, 108, 8992 (2004).
- 8) H. Kato, M. Hori, R. Konta, Y. Shimodaira, and A. Kudo; Chem. Lett., 33, 1348 (2004).
- Sasaki. Y., Kato H., Kudo, A.; J. Am. Chem. Soc., 135, 5441 (2013).
- 10) Sasaki, Y., Nemoto, H., Saito, K., Kudo, A.; J. Phys. Chem. C, 113, 17536 (2009).
- 11) Jia, Q., Iwase, A., Kudo, A.; Chem. Sci., 5, 1513 (2014).
- 12) Iwashina, K., Iwase, A., Ng, Y. H., Amal, R., Kudo, A.; J. Am. Chem. Soc., 137, 604 (2015).